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SUMMARY

This article proposes an algebraic multigrid (AMG) appiodao solve linear systems arising from
applications where strong discontinuities are modeledhieyetXtended Finite Element Method (XFEM).
The application of AMG methods promises optimal scalabibt solving large linear systems. However, the
straight-forward (or ‘black-box’) use of existing AMG tetlques for XFEM problems is often problematic.
In this paper, we highlight the reasons for this behavior prapose a relatively simple adaptation that
allows one to leverage existing AMG software mostly unclehdNumerical tests demonstrate that optimal
iterative convergence rates can be attained that are caivipao AMG convergence rates associated with
linear systems for standard finite element approximatioitisowt discontinuities.
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1. INTRODUCTION

This article discusses algebraic multigrid methods (AMG)solve linear systems arising from
applications where the eXtended Finite Element Method (MFFiE employed to capture strong
discontinuities contained within the domain. The idea & XFEM is to enrich the finite element
space with discontinuous functions such that the discaittircan be placed anywhere in the
element and does not need to be aligned along element edgéss vay, a mesh with optimally
shaped elements can be used for applications with stroegrdisuities, where the position of the
interface may not be known a priori. This flexibility, howeviacurs a cost as the discrete system
contains additional degrees of freedoms (DOFs) assoaidthdhe discontinuous functions, which
requires adaptation of existing FEM software. XFEM exaragtg strong discontinuities can be
found in computational fracture mechanids§], the modeling of inclusion], multiphase-flow
[8], or fluid-structure interactior®f-13], and for four dimensional space-time problems with moving
interfaces 13, 14]. For a recent overview, se&f]. Our particular application is the simulation of
brittle fracture, where the stress field near a crack tipaaterd with an additional set of unknowns
and approximation functions referred to as tip enrichm&he specific approximation functions
differ depending on the specific cracking phenomena, e.gelxitiicks or cohesive cracks.
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2 AXEL GERSTENBERGER AND RAYMOND S. TUMINARO

While the discretization techniques have matured over #w tlecade, iterative solution
algorithms for the resulting linear systems are not as dpesl. Iterative solution is generally
hampered by the large condition number of the linear systehis primarily introduced by the
tip enrichment. This tip enrichment problem has been cemsitlin [L6] within the context of one-
level (i.e., not multigrid) iterative methods where spédtija treatment was proposed to improve
conditioning. Unfortunately, tip enrichment is not the pidsue. This becomes apparent for large
linear systems where one wishes to apply an optimal iterdéehnique such as AMG. It is well
known that multigrid methods are often the mositaéent schemes for very large linear systems
[17, 18]. However, a ‘black-box’ application of existing AMG tedlgues for FEM to XFEM linear
systems yields little improvement when compared to onetlgerative methods. The main reason
is that AMG methods rely almost exclusively on the graph eflthear system. However, the matrix
graphs of FEM and XFEM linear systemgfdr in how they represent strong discontinuities.

XFEM and geometric multigrid have been previously congiden [19]. A consistent level-set
function is developed for use within férent multigrid levels and fferent types of enrichment
functions are treated separately within interpolatiomigirly, a local geometric multigrid method
to resolve features near crack tips and generally smalksitags been proposed ia(]. A multilevel
BPX preconditioner is examined i]] for the generalized finite element method (GFEM) with
simplicial grids. This approach makes use of an additiorsrsupplied matrix to guide the
preconditioner construction. Standard smoothers argyaedlin 2] for a model GFEM problem.
Line Gauss-Seidel schemes are then proposed for an algemutigrid method which rectify poor
convergence issues on a model problem. An algebraic mdltigethod for XFEM crack problems
is proposed inZ3]. It hinges on partitioning the linear system into & 2 block system based on
whether unknowns are either near or far away from cracks.o&trptimal number of iterations
have been achieved i24]. However, the approach requires several modificatione@fultigrid
code and heavily uses XFEM information on all levels of theltigud hierarchy, e.g. interface
positions. It may therefore be seen as less optimal if onesiders code modularity and code
reuse. Additionally, special degrees-of-freedom assediaith discontinuous basis functions are
not coarsened but transferred unchanged to the coarsebtTéis leads to many coarse unknowns
and ultimately &ects parallel scalability. The focus of our approach is toihXFEM specific
information when constructing an AMG multigrid hierarchiyis allows one to employ an existing
multigrid software library unchanged, and results in momsmiar code.

Two types of enrichment regions are present in our apptinatihose corresponding to crack
faces and those corresponding to crack tips. As we show,jgridldifficulties induced by crack
faces are relatively easy to address. In fact, certain XFEMasentations of crack faces do not
introduce any dficulties for an AMG solver. Thus, the key is to understand Whgpresentations
are AMG friendly and why. With this knowledge, we then revisther representations to see how
they can be suitably transformed so that they are more apptefor AMG libraries. With such a
transformation, we féectively adapt the input to the AMG library instead of chamgthe library.
On the other hand, crack tip enrichments introduce seVecerilditioning, but only a relatively few
number of matrix rows are associated with this ill-conditig. Hence, we treat tip enrichments
as ‘fine scale’ features that are best dealt with on the firesatl lonly and propose a simple
multiplicative Schwarz decomposition that can be addedfamdevel smoother.

The paper is outlined as follows: the governing equatiomndif@ar-elastic fracture mechanics
along with commonly used XFEM techniques are reviewed irti®e@. In Section3, the most
widely used XFEM variants for modeling a crack surface avestigated in terms of the associated
matrix graph with the aim of identifying aspects that migatdsoblematic for an AMG solver. With
this understanding, we then propose a transformation ¢émadves these features. In Sectihnhe
overall solution approach is sketched. Here, both crack & crack tip enrichments are treated.
Computational performance is then verified in Section

Note that we concentrate on steady problems in this papdregsare usually harder to solve
than dynamic problems due to the lack of 'stabilizing’ tri@ns$ terms that usually improve iterative
solver performance. However, the proposed algorithm ep@gually well to the dynamic case.
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AN ALGEBRAIC MULTIGRID APPROACH TO SOLVE XFEM BASED FRACTUR PROBLEMS 3

2. FRACTURE MECHANICS USING THE EXTENDED FINITE ELEMENT MERIOD

The strong form for a static, linear elastic fracture prable given as

-V-.g-f=0 inQ@ (1)
u-uP=0 insrP 2)
gn-tN=0 inr™N (3)
g-n=0 inreack, (4)

Here,g denotes the Cauchy stredsa volume force, and the displacement in domai@. Along
the Dirichlet boundary™®, u® denotes the given displacement afddenotes the surface traction
along the Neumann boundafy. Along all crack faceg 2 we assume traction-free Neumann
conditions. The corresponding weak form after integrabipparts is given as

Osz(Sd:g-dx—féd-fdx—f sd-tNdx . (5)
Q Q N

The displacement is discretized as follows

ntlp

un(x) = Z N (X)u; + Z Nk (X)¥rg (X)ui + Z N, (X) Z wtlp(x)utlp ©)

The diferent summations correspond to normal, jump-enriched, tamdnriched nodes. The
standard shape functions are denoted\ify) and the enrichment function for crack faces and tips
are denoted by (x) andwt'p(x) respectively. For our numerical examples, the so-catatted
enrichmen{25] is employed wherg, (x) is defined as

1
w09 = 5 (H() = H(xx). (7)
with H(x) denoting the Heaviside function given as
+1 in Q2
H(x) =
The shifted tip enrichment functions are defined as
W50 = 5 (3 - Falx) (©)
where the four tip enrichment functiokg(x) are
Fi(r.0) = \/Fsin(g), Fa(r.6) = \/FCOS(g), (10)
Fa(r,0) = \/Fsin(g)sin(a), Fa(r,0) = \/Fcos(g)sin(e) ) (11)

Other variants for crack and tip enrichment functions caridoed in the literature, see e.dlq
for an overview. The position of the crack face and the cragk is often defined by level-set
functions [7, 25]. As the solution methods proposed in this paper are indigparof these, they are
not discussed further.

The linear system is constructed by assembling eleméfriests matrices and vectors into global
matrix K and f as

K - A[ 000994 ] (12)

Qe[)X aX
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4 AXEL GERSTENBERGER AND RAYMOND S. TUMINARO

and

fext A[ ) $fdx + fr ) ¢tN’hdx] (13)

e

whereg is a vector of all enriched and unenriched approximatiowtions. For transient problems,
the mass matrix is required, which is computed and assenalled

M = A[ ) ¢p¢dx} . (14)

The density is denoted hy The resulting linear system is of the form
Au=b (15)

where the operatoA equalsK in our case of static, linear elastic fracture mechanicscbuld
also contain transient terms or could be tffe@ive tangent sfiness matrix of a non-linear XFEM
problem. The remainder of the paper addresses the soltiog. ¢L5).

3. HEAVISIDE ENRICHMENT STRATEGIES AND THEIR EFFECT ON THEINEAR
SYSTEM GRAPH

3.1. Linear system graphs

Mesh information is not generally supplied or used by an AM@odathm. Instead, a graph is
constructed by examining matrix entries. This grapieaively occupies the role of the mesh
in traditional geometric multigrid. Ultimately, the grapletermines the support of interpolation
basis functions and more generally how operators are aueals@ hese decisions are based on an
important assumption that the matrix graph representagitrdfluences. That is, a large change in
the solution at the location associated with one vertex lshbe accompanied by commensurate
large solution changes at locations associated with neigindpvertices.

Given its importance, we now investigate matrix graphs. pitimary motivation is to highlight
the diferent graphs associated withfdrent enriched FE representations and how only some of
these satisfy the strong influence assumption. We begin tiyiiglg a matrix graphig. Formally, it
is given by a set of vertice®’ and a set of edges

G=(V§&). (16)

A single vertex represents unknown degrees-of-freedom sihgle mesh node. It is typically
assumed that degrees-of-freedom at a given mesh node asredradtonsecutively, e.g.
[U1x, Ury, Upx, Uzy, . . .]. In this setting, the&! vertex represents degrees-of-freedom numbered from
(k—1)a + 1 toka wherea is the number of degrees-of-freedom per node. The edge ssist® of
vertex pairs

E={(Vi, Vo) | A £ 0 wherei e Vi, je V). a7)

Thus, vertices correspond to matrix rows and edges comesfmononzeros for scalar PDE$or
PDE systems, block matrix rows define vertices while nongatematrix blocks define edges.
3.2. Discretization of a 1D truss with a ‘crack’

3.2.1. Finite Element£onsider a linear elastic material in a one dimensionaktassdepicted in
Figurel. Four standard elements (see e2f])] can be used to model the crack: two to the left of the
crack and two to the right of the crack. To enable the disowiity, separate FE nodes are introduced

fIt should be noted that often the magnitudedgfis compared with a small threshold instead of simply chegkihether
itis nonzero.
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AN ALGEBRAIC MULTIGRID APPROACH TO SOLVE XFEM BASED FRACTUR PROBLEMS 5
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Figure 1. Setup of a 1d truss example. The truss is crackdekimiddle atx = 1.5h.
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(e) XFEM with absolute shifted enrichment

Figure 2. FE and enriched FE shape functions. Dashed linesspond to standard FE shape functions,
while full lines indicate enriched shape functions. Fortéetllustration of the discont. approximation
functions, the crack is positionedatack = 1.3h in these pictures.

such that the two elements adjacent to the crack are not ctath each other. The shape functions
for each node are depicted in Figiteand a global sffness matrix and mass matrix is given in
Tablela corresponding to element widthshg® for crack-adjacent elements andbr elements far
from the crack. Notice that the matrix graph splits into tvigj@int pieces corresponding to the left
and right subdomains. That is, the matrix graph accuratdlgats the disconnected nature of the
two subdomains.

3.2.2. Phantom node¥he phantom node approach is an XFEM variant with discontisu
shape function that has been proposed by several autharsnd@ance 2, 5, 7, 27], under
different names and has been shown to be identical to the origifaM in [28]. The common
philosophy is to model the domains on each side of the crgodrately with a discontinuity in the
element containing the crack and then placing both discteteains into the same global system.
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6 AXEL GERSTENBERGER AND RAYMOND S. TUMINARO

Table |. Stifness and mass matrices for disconnected 1d truss.

Method K/(2 M/(3%)
2 -2 0 0 0 o018 4 o0 0 0 0]
-2 6 -4 0 0 0|4 12 2 0 0 0
0O -4 4 0 0 0|0 2 4 0 0 0
a) Standard O 0 o 4 -4 ollo o o 4 2 0
0O 0 0 -4 6 -2|/l0 0 O 2 12 4
O 0 0 0-2 2]l0 0 O 0 4 8|
2 -2 0 0O 0 018 4 o0 0 0 0]
-2 3 0-1 0 O0f/l4 15 o0 2 0 0
O 0 1 0-1 0}|l0 O 1 0 2 0
b) Phantom 0 -1 0 1 o0 ollo 2 o 1 0 0
0O 0-1 0 3-2|]l0 0 2 0 15 4
O 0 0 0-2 2]l0 0 O 0 4 8|
2 -2 -2 0 0 0]/8 4 4 0 0 0]
-2 4 2 -2 0 0|4 16 14 4 0 0
. -2 2 4 0 -2 0]l 4 14 16 0 4 0
c) Original XFEM 0 -2 0 4 -2 —21lo 4 0 16 -14 4
0O 0 -2 -2 4 2|/l0 0O 4 -14 16 -4
O 0 0-2 2 2]l0 0 O 4 -4 8 |
2 -2 0 0 0 018 4 o0 0 0 0]
-2 4 -1 -2 -1 0 4 16 -1 4 4 0
. 0 -1 1 1 0 0|/0 -1 1 -2 0 0
d) Shifted XFEM 0 -2 1 4 1 -21lo 4 -2 16 1 4
0 -1 0 1 1 o0|l0 4 o0 1 1 0
O 0 0-2 0 2]l0 0 O 4 0 8|
2 -2 0 0O 0 018 4 o0 0 0 0]
-2 4 1 -2 -1 0|4 16 1 4 2 0
. O 1 1 -1 0 0jl0 1 1 2 0 0
e) Abs. Shifted XFEM 0 -2 -1 4 1 -21lo a4 2 15 1 4
0O -1 0 1 1 o0jl0 2 o0 1 1 0
O 0 0-2 0 2]]l0 0 O 4 0 8|
Specifically, the displacement is discretized as
W= T NGO+ Y NAUE+ > Ny (Pl (18)
1e{1,4} 1€{2,3} 1€{2,3}
with
1 in@? 0 inQ?
ary) — d b(x) = 19
Y {0 in QP an v {1 in QP (19)

whereQ? and Q" refer to the left and right domains, respectively. The r@sgishape functions in
Figure2b demonstrate that one can group the unknowns into unknowosdiag to the left and to
the right domain as

.
upz[ul wouw o u4] (20)

where u;, U3, and uj influence the displacement only in doma@¥ and the remaining DOFs
influence onlyQ°. The existence of unknowns at nodes beyond the interfate isiain reason for

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2012)
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AN ALGEBRAIC MULTIGRID APPROACH TO SOLVE XFEM BASED FRACTUR PROBLEMS 7

terms likeoverlapping element®7] or phantom node approadk]. The matrices in Tabléb are
based on the unknown ordering given in E2ZQ)( As with standard finite elements, the associated
matrix graph consists of two disconnected pieces accyregéiecting the lack of influence of the
left domain on the right domain (and vice versa).

3.2.3. Original XFEM The original XFEM discretization of the problem, which foNs [1, 3], uses
three connected elements. The displacement is approxdrgte

4
W=D INOJU -+ D N9 (21)
=1 1€{2,3}
wherey*(x) is the Heaviside function given as
Xron _J+1 inge?
w(x)-Mx)-{_1 o (22)

The setup can be described as a continuous domain (usingtémolard FE approximations) and
two additional enriched approximations. The resultingoghfunction for each unknown are given
in Figure2cand the global sfiness matrix and mass matrix are given in Tdblg~or the latter, the
unknown ordering in the discrete displacement veatas

T
uxz[ul Uz U3 Uz Uy u4] ) (23)

Unlike the two previous formulations, matrix connectiowsipling the left and right sub-domains
are now present.

3.2.4. Shifted enrichmerA variant of the original XFEM discretization is the so callshifted
enrichment as introduced %], which is popular because it recovers the Kronecker delta
property from standard finite element methods for the ucbed DOFs. Here the displacement
is approximated by

4
U= TNOIU + > NI, (24)
1=1

1€{2,3}
and the enrichment functiag(x) for nodel is given as
1
i(x) = 5 (W00 —¢*(x)). (25)
The unknown ordering for the matrices in Talidels
us = [ul uz U3 Uz U3 u4]T (26)

As a result, two unenriched shape function cross the cradklaatwo enriched shape functions
are zero at all nodes (see Figutd). Again, non-zero matrix connections between left andtrigh
sub-domains are present.

3.2.5. Absolute shifted enrichmeRbr the discussion in subsequent chapters, we proposesaari
of shifted enrichment which takes the absolute valug¢x):

500 = 5 0 - ) @)

and uses this in Eq2¢) as a replacement fgrf(x) This leads to strictly non-negative approximation
functions for linear Lagrange polynomials and so the cpwasing mass matrix has only positive
entries. The dference with shifted enrichment can be seen by comparingé&aglwith Figure2e

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2012)
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8 AXEL GERSTENBERGER AND RAYMOND S. TUMINARO

The unknown ordering for the matrices in Talidels

uS =fur up U

T
us U u4] (28)
Whereu‘f‘ replacess} in Eq. (24). As in the shifted enrichment, non-zero matrix connectioetween
left and right sub-domains are present.

3.3. Change of basis transformation

The previous sub-section demonstrates that the origin@NKEnrichment as well as the shifted
enrichment XFEM yield matrices whidfidethe disconnected nature of the sub-domains as opposed
to the phantom node approach and standard FEM where mathéaaly express this disconnection.
The failure to properly express disconnections complgdlee AMG process as described in
Sectiord. Rather than rewrite AMG procedures or an XFEM implemeatative propose a change
of basis transformation

(GTAG)(G*u)=G'b (29)

whereG" AG, G™'u, andG'b describe a new matrix, new unknown vector, and new right Iséfel
respectively. The basic idea is to change a matrix whichshiieconnections to an equivalent one
where they are respected. In this way standard AMG procsaarebe employed on the transformed
matrix without making large software changes on either tees or discretization side. Codes can
simply apply the transformation before and after the sotutf the linear system. Hence, software
with respect to boundary conditions, visualization andilsinthings, that takes advantage of the
specific properties of the original XFEM or the shifted ehrment XFEM remains untouched.
Further, it will not be necessary to explicitly store trarsfiation matrices due to their inherent
simplicity as will be illustrated later in this section.

To find a transformation, we rely on an equivalence that existween dferent XFEM
representations. In particular, the phantom node apprbashbeen shown to be mathematically
identical to the original XFEM formulation2P] which means that there exists a transformation
matrix G;;‘, between these representations. In the following, we refbeargument in an adapted
form and show that there exists a similar transformatiomvbeh the shifted and absolute shifted
enrichment approach and the phantom node approach.

Note that we do not attempt to transform between an XFEM andreesponding FEM
representation, because creating the transformationxmaiuld require a new FEM mesh near the
crack and the evaluation of integrals over element suliseciis we show, transformation between
XFEM representation do not require the evaluation of irdegand are therefore preferred.

3.3.1. Transformation between original XFEM and phantordenapproachConsider a matri>G’r§
such that

U = GuP. (30)
Recalling Eq. {9) and Eq. 22) and recognizing their equivalence implies that in an seeted
element
DN+ N Ul = > N Qw0 + Ny 0w (U (31)
leC leC

where the saf denotes nodes which are adjacentto the crack (i.e., nodek Wéve been enriched).
In our simple example; would consist of the ® and 39 nodes. Eq.%1) is obtained by equating
Eq. (19) with Eq. (22) and then eliminating unenriched nodes (i.e., tReahd 4" nodes in our
example) from both sides of the equation. We also have thafisig two relationships

X X
00 = L and g = 2 (32)
Thus, Eq. 81) can be re-written as
1+ y*(x 1 - y*(x
>N -+ 00w = 3y Mo (25 g 20 ). (@9)
leC leC
Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2012)
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AN ALGEBRAIC MULTIGRID APPROACH TO SOLVE XFEM BASED FRACTUR PROBLEMS 9

For arbitrary shape functions and enrichment functionscareconclude that the two summations
are equal if

w+ up ud - up
and ul' =
2

u = (34)

In matrix form, this can be written for each noble C as
wl_ [ 05 05 [fu?
[ o o5 |[F] @

Applied to the 3 element exampl@’,g is defined by

wj 1L 0O 0 0 0 O0]u
w |0 05 05 0 0 0w
wl_|0 05 -05 0o 0 0 X (36)
w/lo o 0o a5 05  0||&
e o o o a5 -05 o[
w lo o o o 0o 1l

It is block diagonal where theR 2 blocks correspond to nodal functions which are modifieg’hy
Y2, oryP. Each of these & 2 blocks has the same entries as the2diagonal blocks in Eq36).

It is important to notice that the above transformation ditl rely on any property oN; (x) nor
is there any assumption about the number of nodes. ihe transformation only relies on the
relations given in Eq.32). These relations, however, are tlieated by the use of higher order shape
functions and further they are also valid in higher dimensid-or example in two dimensions,

+1 inQ?
-1 ingP

in Q2
in QP

in Q2

inQ° ’ 37)

V) = {cl, Py = {(1’ and ' (x.y) = {

whereQ? andQ® define two sub-domains on opposites sides of a crack. THuo#pitvs that the same
basic 2x 2 transformation matrix is valid when original XFEM and phl@m node discretizations
are employed in higher dimensions and with higher ordereisations. Translating between these
two representations simply requires applying the same2natrix to unknowns associated with
each enrichment function and its corresponding unenricbeadterpart. In the case of vector fields,
e.g. displacement field(x), each of the vector field components is discretized indepetty, hence,
the transformation is applied to each discretized vecttt iemponent independently. An example
for such transformation is given at the end of this section.

3.3.2. Transformation between shifted enrichment and gmamode approactA similar exercise
can be performed for shifted enrichment representatioesalRng Eq. (8) and Eq. 24) and
recognizing their equivalence implies that for all enridlmded € C

DTN U + N BT = > N WAL + Ny ()P (). (38)

leC leC

Using Eq. £5) and Eq. 19), Eq. 38) can be re-written as

Y (u+ 5@ -woo) = Y neo(Rp g 1) e

leC leC

For arbitrary shape functions, this equation holds, if
1 1
U+ 5 00 = ) U = 507+ 0+ (] - W) (40)

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2012)
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10 AXEL GERSTENBERGER AND RAYMOND S. TUMINARO

Evaluating Eq.40) at two arbitrary points on opposite sides of the crack gives
1 1
U+ 5 (1= ea) U} = S+ ur + (uf - W) (41)
1 1
U+ 5 (L= ea) o = S+ up = (0 - u)). (42)
After some algebraic manipulations, we obtain
a 1 X S b 1 X S
ut=u — > W) -1y and u) =u — > W)+ . (43)

Solving foru; anduf and writing the result in matrix form, we obtain

uwl_ | sw*x)+3 —3u(xi)+ 5 |[u?
=] S I “
Applied to the 3-element example, the transformation madri
up 1 0 0 0 0 O0]w
Up o 1 0 0O o0 O u‘é‘
us |0 1 -1 0 0 0}y (45)
Us O 0O O O 1 o u‘é
u3 0 0 0 1 -1 0}u
Ug 0O 0 O 0 0 1flu

Note that the small & 2 sub-matrix is dierent depending on where a node is located relative to
the crack and so node locations relative to each crack musvéleated when constructing this
transformation.

3.3.3. Transformation between absolute shifted enrictina@al phantom node approachhe
equivalent to Eq.40) for this enrichment is

1 1
U+ 5 000 = 00| U = S+ P + (6 - ). (46)
Evaluating at two arbitrary points on opposite crack sidesgy
1
u+ |1- ¢ )| uf = u? (47)
1

U+ |-1 - (x| P = b (48)

Solving foru; andu’® and writing the result in matrix form leads to

[UI ] _ [ 3+ 305 (%) - 3Yr(x) [
N =y (x) (%)

U

EZ} . (49)

Applied to the 3-element exampﬁ'pSI is defined by

Uy 1 0 0O O O O0]Mwm
U2 0 1 0 0 0 O u‘é‘
I _
uy| _ 0 -1 1 0 0 ©O ugl (50)
Us 0O 0 0 o 1 0 ug
Gl [0 0 0 1 -1 o0ff
Us 0 0 0 0 0 1|lu
Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2012)
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AN ALGEBRAIC MULTIGRID APPROACH TO SOLVE XFEM BASED FRACTUR PROBLEMS 11

1

[ o ° Crack .
ition
1 9 \ 3 rack posi
Crack position 9
(a) 1d quadratic truss element (b) 2d linear displacement element

Figure 3. lllustrative examples.

which can be re-ordered as

Wl [1 0 0 0 0 Ofu
el [0 1 0 0 0 ol
gl Jo-1 1 0o o ollu
=0 o o 1 o oflf 1)
Bl o 0o 0 -1 1 ofd
wl 1o 0o 0o o o 1llu

In Eqg. 61), we have a repeating pattern ok2 sub-matrices with 1 on the diagonal and -1 as the
lower left matrix entry at each node, while in E§Q], the sub-matrix pattern depends on the nodal
position. In other words, we can choose to have a fixed tramsfion matrix with a nodal position
dependent phantom node ordering (Ex{)) or vice versa (Eq.50)).

3.4. lllustrative Examples

We close this section with three transformation examplé® first is a one dimensional truss
discretized with a single three node quadratic elementgiste in Figure3a In this case, absolute
shifted enrichment is used at all nodes and the transfoomégigiven by

U ] 1 0 0 0 0 O)u
-1 1 0 0o 0 offd
wf | 0O 0 1 0 0 Offu
W5 o 01 1 0 o ué : (52)
Us 06 0 0 0 1 O0}u
U] 0 0 0 0 -1 1][[|

Each 2x 2 sub-matrix on the block diagonal is identical to those in (&4). This means that the
presence of quadratic basis functions does not changeahsformation structure. As mentioned
earlier, a particular vector ordering is assumed in thesftamed space to obtain this constant block
diagonal structure. Specifically, at some nodgappears beforaF while this is reversed at other
nodes. If one needed to actually determine this orderirgn thwould be necessary to evaluate
nodal positions relative to the discontinuity. Howevers timformation is not required during the
transformation as the algebraic multigrid procedure damsnmake use of the specific ordering.
Thus, there is no need to maintain any information about Inpaigitions within the transformation
implementation.

The second example is from two dimensional linear elagtiigcretized by a single triangular
element using linear basis functions. The triangle is s#eted by a crack as depicted in Figake
and so each of the three nodes has two standard basis fundoresponding to- and y-
displacements as well as two absolute shifted enriched fasttions corresponding t& and
y-displacements. The transformation is defined by
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Figure 4. Mesh sub-divided by two cracks.

@
31’* 1 0 0 0/ 0 0 0 0 0 0O O O ng
u‘q'y O 1 0 O O 0 O O O O 0 off3}p
Lx -1 0 1 0/ 0 0 0 0 0 0 0 0f%x
Uy 0 -1 0 1/ 0 0 0 0o O O 0 offYy
Wy 70700 0 1 0 0 0 0 0 "0 "0|uw,
byl | 0 0 0 O 0 1 0 0O O 0 0 Oofu, 53
$l= o o o o-1 0o 1 o o o o ollgl ©®
us] 0 0 0 0 0-1 0 1] 0 0 0 O0fu
Uax 0 0 0 0/ 0 0 0 0 1 0 0 0fu
Usy 0 0 0 0 0 0 0 0 0 1 0 OQfp
U 0o 0 0 0 0 0 0 0-1 0 1 O
u%* 0o 0o 0 o 0 0 0 0 0-1 0 1]|2
[ Y3y L3y

This same transformation applies even if the crack is latdifferently within the element. The
only difference (changes in the ordering of some transformed unisjaboes not impact the AMG
library. That is, the crack location and orientation do nfieet the basic block structure of the
transformation.

The last example corresponds to a large finite element meshevitvo cracks féectively divide
the domain into three physically independent regions (sger€4). As expected, the transformed
mass and dfiness matrices in Figure have three independent blocks, while no block structure is
apparent in the untransformedfBiess matrix. It should be noted that in all cases a re-orglerin
algorithm is applied 30] only to reveal any possible block structure to the human, eyeh
permutation is not needed in a multigrid computation.

Before closing this section, we note one subtle but importaatrix graph issue within the AMG
scheme (given by Eql6) and Eq. L7)). In particular, we stated that a single vertex represents
unknown degrees-of-freedom at a single mesh node. Whaentbuld be true for a standard FEM
discretization, the situation is a bitftérent for a phantom node approach. In particular, wistle
and uF are located at the same mesh location in the one dimensigaaipes, they correspond
to unconnected degrees-of-freedom on opposite sides afrglok. Thus, they are treated as two
different vertices in the AMG graph representation. Similanyhe two dimensional example, the
two degrees-of-freedom correspondingifg andu?, are treated as one vertex whilg, and uby
are treated as a second vertex. Notice in B§) (hatx andy displacements corresponding to a
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Figure 5. Sparsity pattern for ftiess and mass matrix (blue dots indicate non-zero matrixesjitthe

matrix entries are re-ordered using the symmetric reverghilEMcKee permutation 30] to make the

block structure visible. Note that the mass matrix has 6pedeent blocks, since mass matrix entries for x-
and y-displacement are also independent from each other.

single vertex are ordered consecutively (which is typicegiquired of most AMG codes). Finally,
it is worth pointing out that the number of degrees-of-fremdcber vertex is also constant with this
phantom node representation (which is often also a regeintof AMG codes). This is in contrast
to a traditional XFEM discretization where the most nat@sdignment of degrees-of-freedom to
vertices would not lead to a constant number of degreeseefibm per vertex.

4. APPLYING ALGEBRAIC MULTIGRID TO XFEM DISCRETIZATIONS

4.1. Overview

Multigrid algorithms are fficient techniques for solving large linear systerhg [L8]. Their rapid
convergence hinges on an interplay between smoothing amdecoorrection. Smoothing is a simple
iteration focused on reducing oscillatory error. The cearection is the formation and projection
of a residual equation onto a coarse space. The central ggesithat error can be represented
at a coarser resolution once it has been smoothed. Themolatithe projected system is then
approximated (often via a recursive multigrid invocatidnjerpolated, and finally added to the fine
level iterate. The key is that basic iterative proceduresiarmally éficient at reducing oscillatory
error when applied to elliptic problems. Algorithfnillustrates a multigrid V-cycle A, is the

Algorithm 1 Multigrid V-cycle to solveA,u = b.

functionMGV(A,, u, b, ¢) :

if £# {maxthen
u <« SV(A.u,b)
r—b-Amu
c«0
C « MGV(A[_H_, c, Rr, €+1)
u<u+ P,
u « SP(A, u, b)

else
U« A;lb

discretization matrix on level. R, restricts residuals from levélto level £+1, andP, prolongates
from level £+1 to £. S”() and SP°*() are smoothing procedures. Algebraic multigrid provides
automated framework where grid transfers are generatetaigally and the discrete equations are
projected with a triple matrix product,.1 = R,A,P,. For symmetric systems only a prolongator
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Figure 6. Exemplary 1d aggregation pattern (finest leveljn& color implies same aggregate.

is developed as the restrictor is taken as the transpose girtlongator to preserve symmetry of
the AMG preconditioner.

In the following, we first describe the AMG process for the Hsiale enrichments along the
crack face and, subsequently, for tip enrichments. Ountiue is to leverage existing software and
so we limit our discussion to AMG issues with XFEM implicat®and refer to]7, 18, 31, 32 for
AMG detalils.

4.2. Heaviside enrichments

4.2.1. Aggregation and grid transfer operatoFor Heaviside enrichments, the main challenge is
how to define the transfer operatBy. The process of creating B, begins by defining a matrix
graph as described by EdLG) and Eq. 7). A coarsening strategy must then be chosen. In this
paper, we focus on smoothed aggregation coarseB®@g], though this is not necessary for our
XFEM/AMG approach. In the smoothed aggregation case, coarsen@egomplished by grouping
the graph vertices into a set afigregatesA’,, such that

Nei1 .
A = (Ve Vi) ANAL =0, 1<1 < < Npwa, (54)
i=1

whereN, denotes the number of graph vertices on leahd N, 1 is the number of aggregates
created during the aggregation phase. As each aggregatwel fives rise to one vertex on the
next level, the matrix graph for levék 1 hasN,,; vertices. Aggregation specifics are notimportant
here. The main idea is that each aggregate is essentiallyeddfiy first choosing an unaggregated
vertex and grouping it with all of its unaggregated neighbertices? In this way, aggregates are
comprised of neighboring vertices.

If we now consider this aggregation phase in the context efghantom node approach, we
recall that vertices within diierent disconnected regions correspond to solutions agedcivith
opposite sides of a discontinuity. Clearly, two verticesirtwo diferent disconnected regions are
not neighbors in the corresponding matrix graph. This méaatsvertices associated with opposite
sides a crack will not be grouped into the same aggregatagltine aggregation phase. This is
depicted in Figures for a one dimensional example. The blue and red lines demobe sample
displacements to the left and to the right of the discontintéspectively. Here, it is important to
recall that at node five and at node six there are two vertioegsponding tag, ug, ug, and ug.
Individual aggregates are depicted by rectangles andesijakt below the rectangles. Two circles
are given at node five and at node six. The inner circles quorestou? and ug while the outer
circles areug andu?. That is, outer circles depict vertices associated witantombasis functions.
These displacements correspond to the solution on the tipide of the discontinuity compared
to where the node is located. Thus, in this particular exartig purple aggregate corresponds to

fAggregation schemes include heuristics allowing a coupleentices which are neighbors of the neighbors to be
assigned to the aggregate. These heuristics are orientaddt@ncouraging fairly equisized aggregates.
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Figure 7. Exemplary 2D aggregation pattern (finest levedyn8& color implies same aggregate, white color
indicates Dirichlet BC (not part of any aggregate).

the vertices associated with, ug, ug andug, all of which are associated with displacements within
02, Figure7 depicts similar information in two dimensions.
With aggregates defined, a simple aggregate-wise prolongaih now be constructed,

pl.1
Pf

2,2
P{’

P, = _ , (55)

ISN(+1,N(+1
4

where for simplicity of exposition we have assumed that a@tn® rows associated with a specific
aggregate are ordered consecutively. The detailed ccmhérheP'[;' are unimportant for this paper.
The key point is that basis functions do not span multipleregates. As the aggregates respect
the discontinuity (for a phantom node discretization) nttige prolongator is able to capture this
discontinuity. This implies that i\, has disconnected regions, thap,; = P}Ag P, will also have
disconnected regions and so the coarse level discretizigtiguaranteed to properly represent the
disconnected nature of a crack.

By contrast, an original XFEM (or shifted enrichment, or @bse shifted enrichment) version
of A, does not have disconnected regions. This means that thxgiEph contains edges whose
two vertices are on opposite sides of cracks. Thus, aggreganerally cross discontinuities and so
the corresponding prolongator will include interpolatimasis functions which also cross cracks. As
the algebraic multigrid method has no explicit informatetyout cracks nor was it designed with
XFEM discretizations in mind, it is most likely that the rétsug coarse level discretization will not
properly capture a strong discontinuity. That is, coardatsms will be smooth across the crack
and not accurately represent the physical features of thadiml discretization. Thus, it should not
be surprising that the black-box application of AMG methtmleriginal (or shifted enrichment, or
absolute shifted enrichment) XFEM discretizations mighpboblematic while at the same time its
application to a phantom node representation might be nromiping.

In practice, the interpolation given by EcpY) is referred to as the tentative prolongator in
smoothed aggregation terminology. It is often improved via

P, = (I —wD; AP, (56)
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16 AXEL GERSTENBERGER AND RAYMOND S. TUMINARO

where the matrixD, contains the diagonal entries @&f,, and w is an automatically generated
parameter chosen so that oscillatory modes are damped.éelaiscare again not so important in
understanding the XFEM ramifications. What is importantina@ontextis to recognize that EGG)
still respects discontinuities whefy, is a phantom node discretization. In particularPif does
not include interpolation basis functions which traversksaontinuity and ifA, has disconnected
regions associated with cracks, theawill also not have basis functions crossing discontinsitie
Thus, Ag1 = P}Ang will once again contain disconnected regions and is gueeahto properly
represent the disconnected nature of the discontinuities.

4.2.2. Null spaceln smoothed aggregation, users are required to supply simgateferred to as
the near null space. For linear elasticity, this near nulcgpcorresponds to the rigid body modes.
Thus, in two dimensions, the user should provide three vectme corresponding to a constant
direction translation, one corresponding to a constatitection translation, and one corresponding
to a constant rotation in they plane. For example, the null space vectors for a 2D finite efeém
problem with an assumed DOF ordering of

N
u= [Ul,x Uy ... UWx Wy ... Unx UN,y] (57)
is given as
vl 1 o ... 1 0 ... 1 ofF
N=|w|=[0 1 .. 0 1 ... 0 1 (58)
uret X1 <Y1 ... X =Y ... XN —Yn

wherex, andy, describe the position of node Thus, the last row describes a rigid body rotation
around the origin. In 3D, users provide six vectors (thraagtations and three rotations).

For fracture problems, rigid body motion implies that thaak does not open or close during
such movement. Hence, in the phantom approach, these seatwnaturally defined at all nodes
including phantom nodes identical to how one would do foremdard FEM discretization. With
original, shifted enrichment, or absolute shifted enrieminXFEM, the additional degrees of
freedom alone describe the width of the crack opening. Irerothiords, the enriched degrees
of freedom do not contribute to rigid body modes of the fullndon. Hence, one defines a
standardnear null space for degrees-of-freedom associated withrigheed basis functions and
sets vector components associated with enriched degfdeedom to zero. Thus, if nodehas
both unenriched and enriched degrees of freedom,

;
U=[Uix Uy .o Uix Uy W, Uy . Unx Uny| (59)

then the corresponding null space would contain O for thizleed degrees of freedom:

T

1 o ... 1 O 0 0 ... 1 0
N=lo 1 ... 0 1 00.. 0 1]. (60)
XX =y1 ... X% =y 00 XN YN

When one applies the transformation given by Ex) to the matrix, it is also necessary to apply
G to the near null space vectors before providing these to aGAktup procedure

N* = GIN. (61)
In this way, null space vectors automatically correspona pooper phantom node representation.

4.2.3. ImplementatiorThe simplestimplementation would explicitly for® G', G™%, andG" AG.
The AMG setup phase would then be suppl@UAG and the transformed null space. During
the solve phase, one would apply the outer iterative solvehe original systemA. Within the
preconditioner, however, residual vectors would be tramséd viaG™ before being passed to the
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multigrid V-cycle procedure. The approximation that résditom this multigrid procedure would
then be transformed back to the original space&vizefore being passed back to the outer iterative
procedure. In this way, very few changes need to be madehtereite XFEM or the AMG software.
Of course, this simple implementation requires the stor@fgseveral additional matrices. It is,
however, important to recognize that some storage can bdeadue to the the simple form of
the transformation. In particular, it was shown in the poegi section that it is generally possible to
defineG with the help of one X 2 matrix which appears in several places along the blockodial
The same obviously follows fo&" andG™1. Thus, it is not strictly necessary to explicitly store
these so long as one is able to perform matrix-vector andixaatatrix products. For example,
within the ML multigrid packaged4], matrices can be specified by supplying only two functions:
one which is able to apply matrix-vector products and theiothich can supply a single matrix
row ‘on the fly’ when itis requested. In this way, explicitsige ofG, G, G can be avoided if one
implements these implicitly. In fact, it is even possiblatoid the explicit storage &' AG, though
this is considerably more challenging from an implemeotagperspective. Of course, implicit
representations may incur some additional cost when thes@atrs are employed. While we have
not implemented storage-saving measures, our best guss #ficient implementations would
add only modestly to the setup phase run time and even les &otve phase run time.

4.3. Tip Enrichments

4.3.1. Null space, transformation, and transfer operatdip enrichments describe a local feature
around the crack tip. In the original XFEM publications,gbéip enrichments only span the element
that contains the crack tip, while more recently, elemems given radius around the crack tip are
enriched B5]. From an AMG perspective, tips are considered as high #rquy features that are
best treated by smoothing, because they cannot easily esegied on a coarser grid of a multigrid
hierarchy. Hence, our strategy isriot include the extra degrees into the transfer operators. To do
this without modifying ‘AMG software’, we exploit the way &t smoothed aggregation constructs
prolongators. Without going into details, the prolongatonstruction usually ignores degrees of
freedom that do not contribute to the null space. In othedagf a degree of freedom is not needed
to represent near null space modes, they are not interpdltat® coarser grids. Hence, in practice,
we only need to make sure that the null space vector has zétesfor the enriched DOFs. As
described in Sectiod.2.2 the null space vector automatically contains zeros foicked DOFs
when shifted enrichment, absolute shifted enrichmentrigiral XFEM form is used. To preserve
this quality, an identity matrix is used for tip enriched DR the transformation matrig. This
means that all Heaviside DOFs are in phantom node form whitgpanriched DOFs are in their
original form after the transformation. Thus, the null spassociated with tip DOFs are all zero
and so they are ignored within the prolongator.

4.3.2. SmoothingAs mentioned in the introduction, tip enrichment functicadso introduce a
significant level of ill-conditioning. As a remedy, we prgg@a multiplicative Schwarz solution
strategy for the finest level, where, in addition to a smowhstep for the entire domain, we
solve directly for all unknowns that are attached to nodeh i enriched elements. If multiple
disconnected regions of unknowns are present, each of taefsecsolved independently. Formally,
let set7” contain all DOFs associated with the tip enrichmémntius the normal degree-of-freedom
associated with tip elements. For example, this would tésud block size of 40« 40 (8 standard
DOFs+ 32 enriched DOFs) for a 2D hilinear 4 node quadrilateral eletyas used in the examples.
Now define a smoothe$'P that acts only o™ as

Sy = Arr (62)
SP=oifi¢gTorjeT (63)

where A = G" AG denotes the transformed system. Note that the meanifig @bes not change
during the application o6, because tip enriched DOFs and unenriched DOFs at tip node®a
altered during the transformation.
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With this definition, the two-step (multiplicative Schwapre-smoother on the finest level is

U « GaussSeidel( A, b) (64)
U u+S™b- Au) (65)

and the post-smoother is defined as

U u+S"™(b- Au) (66)
U « GaussSeidal( A, b) . (67)

The inverted order of the smoothing is necessary to obtaymareetric operator.

For 3D problems, the block size is expected to be larger,usecthe tip enrichments would be
placed along a line, hence several elements with tips areexded. Nevertheless, the block size
should stay within reasonable limits such that the propo&edt solve is not a limiting factor.

4.4. Summary

Summarizing all algorithm components needed to use anmxisimoothed aggregation library, the
user must provide the following input:

1. construct null space with standard rigid body modes fenuiched DOFs, zero contributions
for tip DOFs, and for Heaviside DOFs one needs either zerdribotions for shifted and
original XFEM or standard contributions for phantom noderesentations,

2. establish transformation matrix and transform lineatey before passing it to the AMG
library,

3. ensure pre-dropping of weak graph connections, whicarisgh most existing AMG libraries,
to remove artifacts (near-zeros) stemming from@é&G transformation, and

4. employ additional smoothing on finest grid for elementhwip DOFs.

5. EXAMPLES

We concentrate on static problems only as they are usuattjehao solve than system matrices
representing dynamic systems. Dynamic problems can bedaiexactly the same fashion.

5.1. XFEM with only jump enrichments

We first focus on somewhat arbitrary crack locations and thkma closer look at the crack location
within an element.

5.1.1. General problem§&igure8 illustrates a range of examples. The domain is of sizellwith
zero Dirichlet boundary conditions at the top and bottonfies@, zero Neumann conditions on the
left surface, and a constant-load Neumann condition onigin surface. Note that in Figugr the
crack crosses the entire domaiteetively creating two independent sub-domains. For corspay
we also include an FEM example without any cracks in Figiae

The results are given in Table The iteration numbers use a block-Gauss-Seidel smootitter w
only 1 level (basically a standard iterative solver) to thigioal shifted enrichment system and to
the transformed system (columns 1 and 3) and use the propaskitevel solver on the original
and transformed system (columns 2 and 4). A dash indicaaésdmvergence is not achieved within
200 iterations. Applying the AMG solver to the transformgdtem gives iteration counts that are
relativelyindependent of the mesh refinement. Although there is soowetlyiin iteration numbers,
the importance of applying the transformation in conjumetivith AMG is clearly apparent.

5.1.2. Sensitivity to crack distance from element nodesating the crack surface closer to an edge
or node generates enriched approximations that are eifventing linear dependent to the regular
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Figure 8. lllustrative examples.
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Figure 9. Setup for sensitivity analysis.

finite element approximation or, in the case of the phantoaterepproach leads to a DOF with
almost zero support. As a result, the condition number ofitfear system can be arbitrarily higher
than for a comparable FEM problem without cracks. These bagidition numbers are well known
and have been reported in a number of studies, 2.85]. The general solution is to not enrich such
nodes anymore?] to avoid a rank deficient system matrix. Two studies are aegiin Figureda
and Figuredb, where aL. x L domain is intersected by a horizontal and & 4eack, respectively.
In the horizontal case, the crack end points(@®, 0.5L + e.h) and(0.5L — 0.25h, 0.5L + &ch).
For the 45 crack, the end points ar®.0, (3 - &c)h) and (Q5L — 0.25h, 0.5L + (2.75 - &c)h).
As &, approaches 0, the system becomes more ill-conditionedilReme given in Tabléll and
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Table Il. Iteration and condition numbers for the examplebems depicted in Figui@with only Heaviside
enrichments enabled.

Case Ne X Ne  cond. Niter
A G'AG
1L ML 1L ML

30x30 3er03 32 9 32 9
60x60 1e04 63 10 63 10
90x90 3et04 93 11 93 11
120x 120 5er04 123 11 123 11

30x30 1let04 46 23 43 11
60x60 5et04 86 34 84 12
90x90 1let05 127 42 126 15
120x 120 2e05 170 49 167 15

30x30 6e05 59 40 53 11
60x60 3er06 109 55 101 11
90x90 8ert06 156 68 153 12
120x 120 8er06 - 80 - 14

30x30 1let05 54 16 54 11
60x60 4er05 106 20 105 13

la  g90x90 1et06 157 24 157 16
120x120 2006 - 26 - 16
30x30 2007 78 38 76 16

o  60x60 7e07 150 52 146 16
90x90 1e+08 - 63 - 18
120x120 208 - 73 - 18

TablelV. Note that by changing ande., different physical problems are generated, which makes
iteration counts for varying formally not directly comparable. Nevertheless, it canéensthat for
a givenh, the iterative performance for both the 1-level method dednultigrid solution is almost
independent with respect . The reason for this is that Gauss-Seidel is generally BiSea to
conditioning problems that could be resolved by a simplgatial scaling of the linear system.
For e. smaller than the given results the AMG process breaks dowrt@uaumerical precision
limits. As a remedy, not enriching unknowns with such smaigort as proposed e.g. ifi][makes
the system solvable again. I8][ a node was not enriched, if the support on one side of thekcra
divided by the element area was below a threshold dfQt*. For our 48-crack example, the
area ratioAy, /Acie — the upper left triangle aredy, divided by the element arefe — can be
computed aAy| /Ace = £2/2. Choosings. = 0.001 results in an area ratio of 507, which is
about two magnitudes smaller than the limit givé&h For the horizontal cracks. directly gives
the area fraction. Hence, we conclude that the proposedgrdlischeme is able to cover all crack
configurations that occur in practical XFEM simulation, lifawve threshold for enriching nodes is
used.

5.2. XFEM with jump and tip enrichments enrichments

We now add tip enrichments around crack tips (in additiom#&sHeaviside enrichment) and focus
on the transformed system. Comparison of Tableith Tablell clearly shows that for the same
crack position, the tip enrichment makes the linear systemnendificult to solve. First of all,
the condition number is always higher, if tip enriched DOFe iacluded. Correspondingly, the
iteration counts in column 1 (no multigrid) are always higtien in Tablev. Applying AMG to the
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Table Ill. Results for crack location sensitivity, horizahcrack, Heaviside enrichment only

A G'AG
n n

e Nexfe 1L ML awmd 1L ML eong
10x10 26 14 2604 25 9 1e04

05 20x20 47 20 6e04 44 13 4e04
: 40%40 88 25 205 86 13 2005
80x80 169 43 8e05 167 17 7e05

10x10 27 15 2604 24 9 2e04

001 20x20 47 22 6e04 45 13 5e04
: 40%40 88 26 205 85 13 2005
80x80 170 44 9e05 168 17 7e05

10x10 27 15 2606 24 9 1e06

0.0001 20x20 47 22 2e06 45 13 1e06
: 40%40 88 26 2006 85 13 106
80x80 170 45 206 168 17 206

10x10 27 15 2608 24 9 1e08

20x20 47 22 2008 45 13 1e08

0000001 45040 88 26 2008 85 13 1e08
80x80 170 45 208 168 17 1e08

10x10 27 15 2810 24 9 1el0

20x20 47 22 2e10 45 13 1el0

0.00000001 0 40 88 26 2010 85 13 1el0
80x80 170 45 2e10 168 17 1el0

Table IV. Results for crack location sensitivity,“4érack, Heaviside enrichment only

A G'AG
Niter Niter

Ec ne X ne 1L ML X cond 1L ML X cond
10x10 29 18 3e04 27 10 2e04

05 20x20 52 25 1e05 49 14 7e04
' 40x40 95 36 3e05 92 14 3e05
80x80 182 50 1e06 178 18 1e06

10x10 31 20 2e06 27 11 2e06

0.1 20x20 53 27 2e06 48 14 2e06
' 40x40 96 37 3e06 92 14 2e06
80x80 184 53 4e06 178 16 3e06
10x10 31 20 3el0 27 11 2el0

001 20x20 53 27 3el0 48 14 2el0
' 40x40 96 38 3el0 91 14 2el0
80x80 183 53 3el0 178 16 2el0
10x10 31 21 3eld 27 11 2el4d

0.001 2020 53 27 3eld 48 14 2el4d
' 40x40 97 38 3eld 92 14 2el4d
80x80 183 53 3el4 178 16 2el4d
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Table V. Heaviside and Tip Enrichment: Results for transfed systemG' AG. The abbreviations are
defined as: 1L: one level, ML: multilevel, ML, TS: multileveiith tip smoother on finest grid.

Case Ne XNe  @cond. Niter
1L ML ML, TS

30x30 3e+03 32 9 9
| 60x60 1let04 63 10 10
90x90 3et04 93 11 11
120x 120 5er04 123 11 11
30x30 2e07 115 75 18
I 60x 60 8e+08 - 97 20
90x 90 8e+09 - 114 23
120x 120 3erl0 - 141 21
30x30 5e07 143 94 18
m 60x 60 1le+09 - 158 20
90x 90 2e+l10 - - 20
120x 120 3erl0 - - 24
30x30 6e05 66 31 16
1a 60x60 3et06 117 30 16
90x90 1letO7 165 33 20
120x 120 2er07 - 32 19
30x30 1et08 86 34 20
1c 60x 60 7er08 157 34 21
90x 90 2e+09 - 35 24
120x 120 3e-09 - 34 23

transformed system (column 2) does improve the iteratiomtsubstantially. While for problem 1a
and 1c this may already be a practically useful number cdiitens, iteration counts for problem Il
and Il are still not satisfactory. Only the multiplicati@&hwarz smoothing gives an almost optimal
number of iterations. More importantly, thefidirence between cases Il and Ill versus 1la and 1c
vanishes, such that all XFEM simulations converge in less tBO iterations for the given mesh
sizes.

Note that the position of the crack tip within the elementsioet significantly influence the
condition number of the problem as the size of the associatatix entries is not changed
significantly (as in the case of Heaviside enrichments).ddeno degeneration of the linear system
is expected. For demonstration, we repeated tHecd&ck simulation (Figur®b), this time with
both Heaviside and tip enrichments enabled. It can be se@abile VI that moving the crack tip
within the element does not change the iteration count.

6. SUMMARY & CONCLUSION

We presented an algebraic multigrid approach to solve lisgatems arising from applications
where strong discontinuities are modeled by XFEM. In patéig we presented techniques that are
applicable to fracture problems, which typically use Heaé enrichment functions to model the
crack face and special tip enrichment functions to modehta tip displacement and stress field.
We demonstrated, that the phantom node approach for mgdie crack face naturally fits
the assumptions that underlay existing AMG methods fordialements. For original and shifted
XFEM approximations, we provided a simple and inexpensiva terms of both memory and
computation time — transformation to the phantom node sgmi@tion such that software changes

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2012)
Prepared usingimeauth.cls DOI: 10.1002nme



AN ALGEBRAIC MULTIGRID APPROACH TO SOLVE XFEM BASED FRACTUR PROBLEMS 23

Table VI. Results for crack location sensitivity,°4érack, Heaviside and tip enrichments

A G'AG
Niter Niter

&c Nexne 1L ML, TS @cond 1L ML, TS cond
10x 10 33 22 1e05 30 17 1e05

05 20x20 53 28 3e05 50 19 3e05
' 40x40 96 39 7e05 93 21 605
80x80 182 55 206 179 25 2e06

10x 10 34 24 3e06 31 18 3e06

0.1 20x 20 54 30 3e06 50 20 3e06
' 40x40 96 41 3e06 92 21 3e06
80x80 184 57 4e06 179 25 3e06

10x 10 35 25 3el0 31 18 3el0

0.01 20x 20 55 30 3el0 50 20 3el0
’ 40x 40 97 41 3el0 92 21 2el0
80x80 184 58 3el0 179 25 2el0

10x 10 35 25 3el4 31 18 3el4

0.001 20x 20 55 30 3eld4 50 20 3el4d
' 40x 40 97 41 3eld 92 21 2el4d
80x80 184 58 3eld 179 25 2el4

are not needed within either the XFEM or the multigrid litkear Tip enrichments describe local
features and so itis best not to include them into the gritstier operators. Hence, such enrichments
are smoothed on the finest level only as they are not presargaseer levels. (Block-)Gauss-Seidel
is used for smoothing combined with a multiplicative Schevaethod on the finest level to address
the ill-conditioning associated with tip degrees of freedd his entails a direct solve for each set
of unknowns connected to a tip element.

The examples demonstrate th@eetiveness of the approach. The number of iterations scales
well with the mesh size. In addition, the proposed methodssisitive to the crack position with
respect to element edges and nodes. It should be possitgeliothe same transformation ideas to
branching cracks. Since branches can be modeled by thedhbiftoriginal XFEM as well as the
phantom node approach, such a transformation could beliskidhfor 2D and 3D problems in a
similar fashion as we demonstrated for non-branching erack
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